705

Chiroptical Properties of the Non-planar Nitrosamine Chromophore in N-Nitrosaziridines

Gennadii V. Shustov, ^a Alexander V. Kachanov, ^a Gulnara K. Kadorkina, ^aRemir G. Kostyanovsky ^a and Arvi Rauk^{* b}

^a Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

^b Department of Chemistry, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

The sign of the long-wavelength Cotton effect in the circular dichroism (CD) spectra of *N*-nitrosaziridines, possessing a non-planar nitrosamine chromophore, is determined by the intrinsic chirality of the chromophore, as in the cases of *N*-acylaziridines and *gauche*-cyclopropylketones.

The nitrosamine chromophore has electronic absorption bands in the near (340–360 nm) and mid (\sim 230 nm) ultraviolet regions, and is widely used in CD spectroscopy.¹ Hitherto, only chiral compounds with a planar nitrosamine group have been studied. Unlike the normal N,N-dialkylnitrosamines, N-nitrosaziridines possess a non-planar, intrinsically chiral, nitrosamine group, owing to the pyramidal configuration at the aziridine nitrogen and a preference for a *gauche* (synclinal) conformation around the NN bond.²

We have measured, for the first time, the CD spectra of optically active nitrosaziridines 1, 2^{+} (Fig. 1) and have

calculated the optical rotational strengths of transitions to the lowest electronic singlet states of all isomers of the compounds, *i.e.* **1a–d**, and **2a,b** (Scheme 1, Table 1).

Two main absorption bands are observed in the CD spectra of nitrosaziridines 1,2, band I in the region 390-500 nm, and band II at about 250 nm (Fig. 1). Band I exhibits vibronic structure as has also been observed for planar nitrosamines.1 The difference in wavelength between bands I and II (~ 180 nm) is closely reproduced by the calculations of the two lowest electronic singlet states (190-200 nm, Table 1). Both states are valence states and have the same orbital origin as in the case of the planar nitrosamine chromophore.¹ The transition to the first state may be described as $n_{\rm O} \rightarrow \pi_{\rm NO}{}^*,$ where the $n_{\rm O}$ orbital lies in the plane of the NNO fragment and is the 2p orbital on oxygen with an out-of-phase admixture of the 'sp2' hybrid orbital on the nitrogen of the nitroso group. The second transition is to the π_{NO}^* orbital also, but originates from a π orbital very nearly perpendicular to the NNO plane, and resembles the highest occupied molecular orbital of a

⁺ Nitrosaziridines 1, 2 were obtained in n-heptane solutions by the action of 0.5 equiv. CINO on (2*R*)-2-methylaziridine³ and on (2*S*, 3*S*)-2,3-dimethylaziridine,⁴ respectively, at -70°C, as previously described for the racemic compounds.⁵ Compounds 1, 2 partially decompose during the CD measurements. Consequently the $\Delta \epsilon$ values in Fig. 1 are not accurate. However, the qualitative features of the CD spectra were reproduced in several experiments.

Table 1 Calculated energies ^a and electronic properties	es ^b for N-nitrosaziridines, 1 and 2
--	---

		1a	1b	1c	1d	2a	2b
Relative energy ^c /kJ mol ⁻¹		0	0.96	6.41	9.71	0	2.51
$S_0 \to S_1 (n \to \pi^*)$	$\Delta E/\mathrm{eV}$ $[\mathrm{R}]^d$ f ^e	3.53 20.9 0.0025	3.51 -17.2 0.0022	3.57 -19.5 0.0032	3.55 21.6 0.0022	3.52 32.5 0.0028	3.48 -14.2 0.0025
$S_0 \to S_2 \\ (\pi \to \pi^*)$	ΔE /ev $[\mathbf{R}]^d$ f ^e	7.97 -118.2 0.0518	7.94 108.2 0.0486	7.97 105.1 0.0431	8.04 - 100.5 0.0965	$7.87 - 121.1 \\ 0.0550$	7.94 54.0 0.1231

^{*a*} RHF/6-31G^{*} at 6-31G^{*} optimized geometries. ^{*b*} Using the 6-31G^{*} basis set and the perturbed CI procedure described previously.⁶ ^c E(RHF): 1a -300.714925 Hartree; 2a -339.753176 Hartree. ^{*d*} 10⁴⁰ cgs. ^{*e*} Oscillator strength.

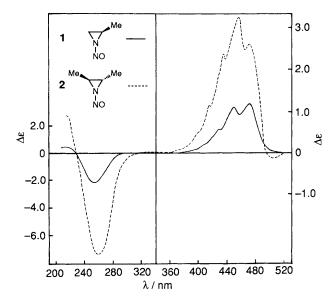
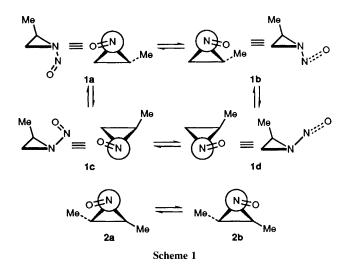



Fig. 1 The CD spectra of N-nitrosaziridines 1 and 2 in n-heptane at 10 $^{\circ}\mathrm{C}$

four-electron three-orbital π system, such as, for example, the amide group.⁶ The calculated oscillator strengths (Table 1) are consistent with this interpretation. In the CD spectra of nitrosaziridines 1, 2, bands I and II, especially band I, show a significant bathochromic shift (~100 nm for band I) in comparison with other nitrosamines.¹ This shift is mainly due to a lowering of the π_{NO}^* orbital energy owing to weakening of the amide-like $n_N - \pi_{NO}^*$ conjugation.

In spite of diastereoisomeric relations between isomers 1a-d, and 2a, b (Scheme 1), the Cotton effect (CE) signs of the first two transitions of each isomer depend only on the intrinsic chirality of the chromophore (Table 1). The (-)-synclinal rotamers, 1a, d, 2a, have a positive sign of the first CE and a negative sign of the second, and the (+)-synclinal rotamers, 1b, c, 2b, have the opposite CE signs.

Assuming $\Delta S^0 = 0$, the equilibrium ratio of isomers 1a:1b:1c: 1d may be estimated from the relative energies (Table 1) to be 0.57: 0.38: 0.04: 0.01, and of rotamers 2a:2b as 0.74: 0.26. From these ratios and calculated value of rotational strengths, the optical rotatory strength of the equilibrium mixture of the isomers of nitrosaziridine 1 may be estimated to be +4.8 for the first transition and -23.1 for the second, in cgs units (×10⁴⁰). The corresponding values for 2 are + 20.4 and -75.6, respectively. These CE signs coincide with the experimental observations (Fig. 1). In addition, the relative intensities of the two bands are in qualitative agreement, *i.e.*, the first CE has a smaller intensity than the second for each compound, and the CE intensities of both transitions in the CD spectrum

of nitrosaziridine 2 arè higher than the corresponding intensities of nitrosamine 1.

Thus, the chiroptical properties of N-nitrosaziridines are rather closer to their topological and electronic analogues, *N*-acylaziridines⁶ and *gauche*-cyclopropylketones,⁷ than to the more usual *N*,*N*-dialkylnitrosamines with a planar nitrosamine chromophore. The three-membered ring, together with the *gauche* unsaturated group (C=O, N=O) forms an intrinsically chiral chromophore which has the same $n-\pi^*$ orbital origin of the long-wavelength CE, and the same relation of the sign of this CE with the stereochemistry of the chromophore in all three systems.

Received, 7th January 1992; Com. 2/00074A

References

- 1 H. E. Smith, in *The Chemistry of the Amino, Nitroso, and Nitro Compounds and Their Derivatives. Suppl. F*, ed. S. Patai, Wiley, New York, 1982, pp. 999–1034; T. Polonski and K. Prajer, *Tetrahedron*, 1976, **32**, 847.
- 2 K. Kirste and P. Rademacher, J. Mol. Struct., 1981, 73, 171.
- 3 Yu. Minoura, M. Takebayshi and Ch. C. Price, J. Am. Chem. Soc., 1959, 81, 4689.
- 4 F. H. Dickey, W. Fickett and H. J. Lucas, J. Am. Chem. Soc., 1952, 74, 944.
- 5 W. Rundel and E. Muller, *Chem. Ber.*, 1963, **96**, 2528; R. D. Clark and G. K. Helmkamp, *J. Org. Chem.*, 1964, **29**, 1316.
- 6 G. V. Shustov, G. K. Kadorkina, S. V. Varlamov, A. V. Kachanov, R. G. Kostyanovsky and A. Rauk, J. Am. Chem. Soc., 1992, 114, 1616.
- 7 D. A. Lightner and D. E. Jackman, *Tetrahedron Lett.*, 1975, 3051;
 G. Snatzke, *Angew. Chem.*, *Int. Ed. Engl.*, 1979, 18, 363.